Pandas2.2 DataFrame
Indexing, iteration
method | describe |
---|---|
([n]) | Used to return the first few lines of the DataFrame |
Methods to quickly access and modify individual values in DataFrame | |
Methods to quickly access and modify individual values in DataFrame | |
Used to access and modify data in a DataFrame based on tags (row labels and column labels) | |
Used to access and modify data in a DataFrame based on integer positions (row and column numbers) | |
(loc, column, value[, …]) | Used to insert a new column at the specified location of the DataFrame |
DataFrame.iter() | Column name used to iterate over DataFrame |
() | Column names and column data used to iterate over DataFrame |
() | Returns the column name of the DataFrame |
() | Used for iterating DataFrame |
([index, name]) | Used for iterating DataFrame |
(item) | Used to delete a specified column from a DataFrame |
([n]) | Used to return the last of the DataFramen OK |
()
([n])
Method is used to return the last of the DataFramen
OK. If not specifiedn
, the last 5 lines are returned by default.
parameter
-
n
: Optional parameter, indicating the number of rows to be returned, default is 5.
Return value
- Return to the end of DataFrame
n
Road, type is。
Example
Suppose we have a DataFrame as follows:
import pandas as pd data = { 'A': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 'B': [11, 12, 13, 14, 15, 16, 17, 18, 19, 20] } df = (data) print("Original DataFrame:") print(df)
Output:
Original DataFrame:
A B
0 1 11
1 2 12
2 3 13
3 4 14
4 5 15
5 6 16
6 7 17
7 8 18
8 9 19
9 10 20
usetail
The method returns the last 3 lines:
last_three_rows = (3) print("\nLast 3 lines:") print(last_three_rows)
Output:
Last 3 lines:
A B
7 8 18
8 9 19
9 10 20
If not specifiedn
, the last 5 lines are returned by default:
last_five_rows = () print("\nThe last 5 lines by default:") print(last_five_rows)
Output:
The last 5 lines are defaulted:
A B
5 6 16
6 7 17
7 8 18
8 9 19
9 10 20
You can see,tail
Methods can easily obtain the last few lines of data of DataFrame.
This is the end of this article about the use of pandas DataFrame tail. For more related pandas DataFrame tail content, please search for my previous articles or continue browsing the related articles below. I hope everyone will support me in the future!