Pandas2.2 DataFrame
Function application, GroupBy & window
method | describe |
---|---|
(func[, axis, raw, …]) | Used to apply a function along the axis (row or column) of a DataFrame |
(func[, na_action]) | Used to apply a function to each element of a DataFrame |
()
()
Methods are used to apply a function to each element of a DataFrame. It is the easiest element-by-element operation method and is often used for data conversion or cleaning.
Method signature
(func, na_action=None)
Parameter description
parameter | type | describe |
---|---|---|
func |
function | Functions applied to each element of DataFrame. |
na_action |
{None, ‘ignore’}, default: None | If'ignore' , skipNaN Value, not applied to itfunc 。 |
Return value
- Returns a new DataFrame with the same shape as the original DataFrame, and each element is
func
The results after application.
Example
Example 1: Simple mapping (such as converting each element into a string)
import pandas as pd df = ({ 'A': [1, 2, 3], 'B': [4, 5, 6] }) # Convert each element to a stringresult = (str) print(result)
Output:
A B
0 1 4
1 2 5
2 3 6
Example 2: Custom function mapping (such as adding 10)
# Add 10 to each elementresult = (lambda x: x + 10) print(result)
Output:
A B
0 11 14
1 12 15
2 13 16
Example 3: Use na_action='ignore' to ignore the NaN value
import numpy as np df_with_nan = ({ 'A': [1, , 3], 'B': [, 5, 6] }) # Add 1 to non-NaN elements onlyresult = df_with_nan.map(lambda x: x + 1, na_action='ignore') print(result)
Output:
A B
0 2.0 NaN
1 NaN 6.0
2 4.0 7.0
Summarize
-
map()
Is an ideal tool for one-to-one transformation of each element in a DataFrame. - Support skip
NaN
Values are mapped. - Commonly used in format conversion, numerical conversion and other scenarios.
This is the end of this article about the implementation of the pandas DataFrame map method. For more related pandas DataFrame map content, please search for my previous articles or continue browsing the related articles below. I hope everyone will support me in the future!