()
Returns the number of elements in param
Number of statistical model parameters
num_params = sum(() for param in ()) print(num_params)
Addendum: Pytorch View model parameters
Pytorch View model parameters
View the parameters of the model built with Pytorch, and see the program directly.
import torch # Introduce and assign aliases import as nn import as F class Net(): def __init__(self): # Functions of subclasses must execute the constructor of the parent class in the constructor function super(Net, self).__init__() # Convolutional layer '1' means input image is single channel, '6' means number of output channels, '3' means convolution kernel is 3*3 self.conv1 = nn.Conv2d(1, 6, 3) #Linear layer with 1350 input features and 10 output features self.fc1 = (1350, 10) # How is the 1350 calculated here? It depends on the forward function # Positive communication def forward(self, x): print(()) # Results: [1, 1, 32, 32] # Convolution -> Activation -> Pooling x = self.conv1(x) # According to the convolution of the size of the formula, the result is 30, the specific formula is described in detail in the second later, Section IV Convolutional Neural Networks. x = (x) print(()) # Results: [1, 6, 30, 30] x = F.max_pool2d(x, (2, 2)) #We use the pooling layer and calculate 15 x = (x) print(()) # Results: [1, 6, 15, 15] # reshape, '-1' for adaptive #What we're doing here is we're squashing [1, 6, 15, 15] to [1, 1350]. x = (()[0], -1) print(()) # Here's the input 1350 for the fc1 level # x = self.fc1(x) return x net = Net()
for parameters in (): print(parameters)
The output is.
Parameter containing:
tensor([[[[-0.0104, -0.0555, 0.1417],
[-0.3281, -0.0367, 0.0208],
[-0.0894, -0.0511, -0.1253]]],
[[[-0.1724, 0.2141, -0.0895],
[ 0.0116, 0.1661, -0.1853],
[-0.1190, 0.1292, -0.2451]]],
[[[ 0.1827, 0.0117, 0.2880],
[ 0.2412, -0.1699, 0.0620],
[ 0.2853, -0.2794, -0.3050]]],
[[[ 0.1930, 0.2687, -0.0728],
[-0.2812, 0.0301, -0.1130],
[-0.2251, -0.3170, 0.0148]]],
[[[-0.2770, 0.2928, -0.0875],
[ 0.0489, -0.2463, -0.1605],
[ 0.1659, -0.1523, 0.1819]]],
[[[ 0.1068, 0.2441, 0.3160],
[ 0.2945, 0.0897, 0.2978],
[ 0.0419, -0.0739, -0.2609]]]])
Parameter containing:
tensor([ 0.0782, 0.2679, -0.2516, -0.2716, -0.0084, 0.1401])
Parameter containing:
tensor([[ 1.8612e-02, 6.5482e-03, 1.6488e-02, ..., -1.3283e-02,
1.8715e-02, 5.4037e-03],
[ 1.8569e-03, 1.8022e-02, -2.3465e-02, ..., 1.6527e-03,
2.0443e-02, -2.2009e-02],
[ 9.9104e-03, 6.6134e-03, -2.7171e-02, ..., -5.7119e-03,
2.4532e-02, 2.2284e-02],
...,
[ 6.9182e-03, 1.7279e-02, -1.7783e-03, ..., 1.9354e-02,
2.1105e-03, 8.6245e-03],
[ 1.6877e-02, -1.2414e-02, 2.2409e-02, ..., -2.0604e-02,
1.3253e-02, -3.6008e-03],
[-2.1598e-02, 2.5892e-02, 1.9372e-02, ..., 1.4159e-02,
7.0983e-03, -2.3713e-02]])
Parameter containing:
tensor(1.00000e-02 *
[ 1.4703, 1.0289, 2.5069, -2.2603, -1.5218, -1.7019, 1.2569,
0.4617, -2.3082, -0.6282])
for name,parameters in net.named_parameters(): print(name,':',())
Output.
: ([6, 1, 3, 3])
: ([6])
: ([10, 1350])
: ([10])
The above is a personal experience, I hope it can give you a reference, and I hope you can support me more.