OpenCV is a popular open-source computer vision library available for different programming languages such as Python, C++, and JavaScript.It provides a rich set of tools to process and analyze images and videos, allowing you to do everything from resizing single images to building complex object recognition applications.
This article gives you an introduction to the basics in Python Opencv.
1. Create a window
import cv2 import numpy as np def createWindow(): #Read the picture img=('images/1 (1).jpg') #create windows flags=WINDOW_NORMAL means you can change the window size (winname='window',flags=cv2.WINDOW_NORMAL) # Scale the size of the window (winname='window',width=300,height=200) #Display Window ('window',img) # Get mouse or key value key=(0) if (key&0XFF==ord('Q')): () # Destroy all windows if __name__ == '__main__': print('PyCharm') createWindow()
2. Save the picture
import cv2 import numpy as np def createWindow(): #Read the picture img=('images/1 (1).jpg') #create windows flags=WINDOW_NORMAL means you can change the window size (winname='window',flags=cv2.WINDOW_NORMAL) # Scale the size of the window (winname='window',width=300,height=200) while True: #Display Window ('window',img) # Get mouse or key value key=(0) if (key&0XFF==ord('Q')): break elif (key&0xFF==ord('s')): # Save the picture # name-saved file name img-saved image ('save_pic.png', img) break () # Destroy all windows if __name__ == '__main__': print('PyCharm') createWindow()
3. Capture video
import os import cv2 import numpy as np def CollectVideo(): #Creating windows (winname='window',flags=cv2.WINDOW_AUTOSIZE) (winname='window',width=450,height=300) # Turn on the camera cap=(0) fourcc = cv2.VideoWriter_fourcc(*'MJPG') # Get window size size = (int((cv2.CAP_PROP_FRAME_WIDTH)), int((cv2.CAP_PROP_FRAME_HEIGHT))) # Output files Multimedia file formats Video frame rate Resolution size vw = ('', fourcc, 25, size) while (): #Read video frames from the camera OK,frame=() if OK: #Display the camera screen ('window',frame) (winname='window', width=450, height=300) # Write the video frames captured from the camera to a file (frame) # Get keys from the mouse and keyboard, press ESC to exit. if (1)&0xFF==27: break # Resources released () () # Destroy all windows () if __name__ == '__main__': print('Pycharm') CollectVideo()
4. Mouse control
# Explanation of callback function parameters #event: mouse movement, press left button; #(x,y): mouse coordinates #flags: mouse buttons and key combinations import cv2 import numpy as np # Callback function definition def mouse_callback(event,x,y,flags,userdata): print(event,x,y,flags,userdata) #Creating windows (winname='mouse',flags=cv2.WINDOW_NORMAL) (winname='mouse',width=450,height=300) # Set callback function for "mouse" window. ('mouse',mouse_callback,'123') img=(shape=(300,450,3),dtype=np.uint8) while True: ('mouse',img) # Press ESC to exit if (1)&0xFF==27: break () if __name__ == '__main__': print('pycharm')
subassemblies
import os import cv2 import numpy as np (winname='trackbar',flags=cv2.WINDOW_NORMAL) (winname='trackbar',width=450,height=300) # Get the value of TrackBar def TrackBarValue(): #Get the value of the sub-window "R" under the window "window". value_R= (trackbarname='R', winname='trackbar') value_G = (trackbarname='G', winname='trackbar') value_B = (trackbarname='B', winname='trackbar') return value_R,value_G,value_B def callback(): pass # Define the TrackBar function def TrackBarBGR(): #value-value of the trackbar count-maximum count to set (minimum value is 0) OnChange-callback function ('R','trackbar', 0, 255, callback) ('G','trackbar', 0, 255, callback) ('B','trackbar', 0, 255, callback) img=(shape=(450,300,3),dtype=np.uint8) # Create trackbar component TrackBarBGR() while True: # Get the value of the trackbar R,G,B=TrackBarValue() img[:]=[B,G,R] # Change the color of the background after getting the value ('trackbar', img) # Press ESC to exit if (1)&0xFF==27: break () if __name__ == '__main__': print('Pycharm')
To this point this article on the basics of Python Opencv in the knowledge of the article is introduced to this, more related to the basics of Python Opencv content, please search for my previous articles or continue to browse the following related articles I hope that you will support me more in the future!