Let's start with a sample
import tensorflow as tf raw = ([1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1]) ''' Split into [1,2] [3,4] [5,6] [6,5] [4,3] [2,1] ''' result_1 = tf.dynamic_partition((raw, [6,2]),[0, 1, 2, 3, 4, 5], 6) ''' break up into [1, 2, 3, 4, 5, 6] [6, 5, 4, 3, 2, 1] ''' result_2 = tf.dynamic_partition((raw, [2, 6]), [0, 1], 2) ''' Split into [1] [2] [3] [4] [5] [6] [6] [5] [4] [3] [2] [1] ''' result_3 = tf.dynamic_partition((raw, [12, 1]), [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], 12) with () as sess: print((result_1)) print((result_2)) print((result_3))
in the end
[array([[1, 2]]), array([[3, 4]]), array([[5, 6]]), array([[6, 5]]), array([[4, 3]]), array([[2, 1]])] [array([[1, 2, 3, 4, 5, 6]]), array([[6, 5, 4, 3, 2, 1]])] [array([[1]]), array([[2]]), array([[3]]), array([[4]]), array([[5]]), array([[6]]), array([[6]]), array([[5]]), array([[4]]), array([[3]]), array([[2]]), array([[1]])]
One more sample is given
Py3 Code:
# Samples of one-hot functions import tensorflow as tf label = (tf.int32,[None]) # Directly take the input sequence and perform a One-Hot result one_hot = tf.one_hot(label, 3, 1, 0) # Transpose one_hot_new = (one_hot, perm=[1,0]) one_hot_new = (one_hot_new, tf.float32) # one_hot_new[2] = one_hot_new[2] * 1.5 # Split by size of each dimension one_hot_new_1 = tf.dynamic_partition(one_hot_new, [0, 1, 1], 2)[0] one_hot_new_2 = tf.dynamic_partition(one_hot_new, [1, 0, 1], 2)[0] one_hot_new_3 = tf.dynamic_partition(one_hot_new, [1, 1, 0], 2)[0] # Split by size of each dimension one_hot_1 = tf.dynamic_partition(one_hot_new, [0, 1, 2], 3)[0] one_hot_2 = tf.dynamic_partition(one_hot_new, [0, 1, 2], 3)[1] one_hot_3 = tf.dynamic_partition(one_hot_new, [0, 1, 2], 3)[2] # one_hot_new_3 = tf.dynamic_partition(one_hot_new, [0, 0, 1], 2)[2] # Splice the above two dimensions to get the original result one_hot_new = ([one_hot_new_1, one_hot_new_2], axis=0) if __name__ == '__main__': with () as sess: (tf.global_variables_initializer()) one_hot_out, one_hot_new_out, one_hot_new_1_out, one_hot_new_2_out, one_hot_new_3_out, one_hot_1_out, one_hot_2_out, one_hot_3_out = ([one_hot, one_hot_new, one_hot_new_1, one_hot_new_2, one_hot_new_3, one_hot_1, one_hot_2, one_hot_3], feed_dict={label: [0, 1, 1, 2, 2, 0, 0, 1, 2, 2, 0, 2]}) print("Raw One-hot results:") print(one_hot_out, end='\n\n') print("The results of the above.T:") print("Method 1 Splitting:") print(one_hot_new_out, end='\n\n') print("Split (1) dimension:") print(one_hot_new_1_out, end='\n\n') print("broken up inseparate items (2)dimension:") print(one_hot_new_2_out, end='\n\n') print("broken up inseparate items (3)dimension:") print(one_hot_new_3_out, end='\n\n') print("Method 2 Splitting:") print("Split (1) dimension:") print(one_hot_1_out, end='\n\n') print("broken up inseparate items (2)dimension:") print(one_hot_2_out, end='\n\n') print("broken up inseparate items (3)dimension:") print(one_hot_3_out, end='\n\n')
Console Output:
primitiveOne-hotin the end: [[1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1] [1 0 0] [1 0 0] [0 1 0] [0 0 1] [0 0 1] [1 0 0] [0 0 1]] 以上的in the end.T: Method 1 Splitting: [[ 1. 0. 0. 0. 0. 1. 1. 0. 0. 0. 1. 0.] [ 0. 1. 1. 0. 0. 0. 0. 1. 0. 0. 0. 0.]] broken up inseparate items(1)dimension: [[ 1. 0. 0. 0. 0. 1. 1. 0. 0. 0. 1. 0.]] broken up inseparate items (2)dimension: [[ 0. 1. 1. 0. 0. 0. 0. 1. 0. 0. 0. 0.]] broken up inseparate items (3)dimension: [[ 0. 0. 0. 1. 1. 0. 0. 0. 1. 1. 0. 1.]] 方法二broken up inseparate items: broken up inseparate items(1)dimension: [[ 1. 0. 0. 0. 0. 1. 1. 0. 0. 0. 1. 0.]] broken up inseparate items (2)dimension: [[ 0. 1. 1. 0. 0. 0. 0. 1. 0. 0. 0. 0.]] broken up inseparate items (3)dimension: [[ 0. 0. 0. 1. 1. 0. 0. 0. 1. 1. 0. 1.]]
Above this Tensorflow tf.dynamic_partition matrix splitting example (Python3) is all I have to share with you, I hope to be able to give you a reference, and I hope you will support me more.