1 View the current device
Input Situation:
import torch print("Default Device : {}".format(([4, 5, 6]).device))
Output:
Default Device : cpu
2 cpu devices can be specified using "cpu:0".
Inputs
device = ([1, 2, 3], device="cpu:0").device print("Device Type: {}".format(device))
Output
Device Type: cpu
3 gpu devices can be specified using "cuda:0".
Inputs
gpu = ("cuda:0") print("GPU Device:【{}:{}】".format(, ))
Output
GPU Device:【cuda:0】
4 Querying the number of CPU and GPU devices
Inputs
print("Total GPU Count :{}".format(.device_count())) print("Total CPU Count :{}".format(.cpu_count()))
Output
Total GPU Count :1
Total CPU Count :8
5 Switching from a CPU device to a GPU device
5.1 Methods use CPU devices by default
Inputs
data = ([[1, 4, 7], [3, 6, 9], [2, 5, 8]]) print()
Output
([3, 3])
5.2 Converting a cpu's Tensor to a GPU device using the to method
Input Situation:
data_gpu = (("cuda:0")) print(data_gpu.device)
Output:
cuda:0
5.3 Converting a cpu's Tensor to a GPU device using the .cuda method
Input Situation:
data_gpu2 = (("cuda:0")) # If there is only one gpu write it directly like this: data_gpu2 = () print(data_gpu2.device)
Output:
cuda:0
This article on PyTorch device and the use of this article is introduced to this, more related to the use of PyTorch device content please search for my previous articles or continue to browse the following related articles I hope you will support me more in the future!