Using model.named_parameters() makes this easy.
() # ######################################## Froze some layers to fine-turn the model ######################## for name, param in model.named_parameters(): # Iteration of parameters contained in each layer of the model with parameter names if 'out' or 'merge' or 'before_regress' in name: # Determine if certain keywords are included in the parameter name string continue param.requires_grad = False # ############################################################################################################# optimizer = (filter(lambda p: p.requires_grad, ()), lr=opt.learning_rate * args.world_size, momentum=0.9, weight_decay=5e-4)
Above this Pytorch freezes the training method according to the name of the layers is all that I have shared with you, I hope to give you a reference, and I hope you will support me more.