#pd.to_datetime function
#Read the data import pandas as pd data = pd.read_csv('') # Convert stop_date to datetime format dataframe, save to stop_datetime data['stop_datetime'] = pd.to_datetime(data.stop_date')
# Customize a time and calculate the time difference
data_new = pd.to_datetime('2006-01-01') data['time_d'] = time_new - data.stop_datetime data['time_d'].head()
# of occurrences by year and month counted
data.stop_datetime..value_counts() data.stop_datetime..value_counts()
# Withdrawal year, month, day
# of years withdrawn data['year'] = data.stop_datetime. data['year'].head() # Month of extraction data['month'] = data.stop_datetime. data['month'].head() # Withdrawal date data['day'] = data.stop_datetime. data['day'].head()
# Plotting with time series data
data['stop_time_datetime'] = pd.to_datetime(data.stop_time) (data.stop_time_datetime.).drugs_related_stop.sum().plot()
This is the whole content of this article.