Data import and array transposition
(framme,dtype='dataType',delimmiter='delimiter',
skiprows=''(number of rows skipped'),
usecols=''Number of lines to be used',''
unpack='Ture/Flase(transpose or not)':Load text file data
Meaning of loadtxt parameter
- The numpy array transpose is done in 4 ways
- The value of the parameter unpack is set to TRUE.
- Transpose using the .T property of the array
- Transpose using the transpose() method of an array
- Using the swapaxes method with numpy arrays
Examples are as follows:
import numpy as np filepath = './' t1 = (filepath,usecols=(1,2,3),delimiter=',',dtype='float') print(t1) # Four ways to transpose # first method:Set the value of parameter "unpack" —— True t2 = (filepath,usecols=(1,2,3),delimiter=',',dtype='float',unpack=True) # second method: use the '.T' attributions of array's t3 = print(t3) # third method: use the method of 'transpose' t4 = () print(t4) # forth method: swapaxes(arguments:axes needed swapped) t5 = (0,1) print(t5)
Run results:
numpy array indexing and slicing
import numpy as np filename = './' t1 = (filename,delimiter=',',dtype='float',usecols=(1,2,3)) # print(t1) # Fetch line operations print(t1[0]) print(t1[0,:]) # Take multiple consecutive lines print(t1[3:]) print(t1[3:,:]) # Fetch discrete multiple lines print(t1[[1,3,13,19]]) print(t1[[1,2,4,6],:]) # Fetch column print(t1[:,0]) # Take consecutive columns print(t1[:,2:]) # Take discontinuous columns print(t1[:,[1,2]]) # Take rows 2-5, columns 2-3 # Fetch cross data from multiple locations print(t1[1:5,1:3]) # Fetch data information from non-adjacent locations print(t1[[1,4,6],[0,1,2]])
import numpy as np filepath = './' t1 = (filepath,delimiter=',',usecols=(1,2,3)) print(t1<9.5) t1[t1 < 9.5] = 0 print(t1[:,1]) # if-else operations (t1>=9.6,10,0) print(t1) # clip(m,n)Putting an array with less thanm's replacement withm,more thann's replacement withn
The above is Python data analysis numpy text data reading index slicing example details, more information about Python numpy data reading index please pay attention to my other related articles!