SoFunction
Updated on 2024-11-21

An Introduction to Data Types in Python

Datatype:

float — Floating point numbers can be accurate to the back of the decimal point.15classifier for honorific people
int — Integer can be infinite
bool — nonzerotrue,zero signfalse
list — listings

Float/Int:

Operators:

/ - Floating point division
// - rounding when the result is positive; 11/5 = 2; 11/4 = 2
When the result is negative, round down; -11//5=-3; -11/4=-3

When the numerator and denominator are both float, the result is float.

** - calculate the power; 11**2 = 121
% - take the balance

Other mathematical operations

1. Score:

import fractions;
(1,3) — 1/3
import math;
—()
—()
—()
—()

—3.1415926…
(/2) — 1.0
(/4) — 0.9999999999…
(); math

List:

Created: a_list = ['a', 'b', 'mpilgrim', 'z', 'example']

a_list[-1] — ‘example'
a_list[0] — ‘a'
a_list[1:3] — [‘b', ‘mpilgrim', ‘z']
a_list[:3] — [‘a', ‘b', ‘mpilgrim' ]
a_list[3:] — [‘z', ‘example']
a_list[:]/a_list — [‘a', ‘b', ‘mpilgrim', ‘z', ‘example']

*Note: a_list[:] and a_list return different lists, but they have the same elements!

a_list[x:y] - Get the list slices, x specifies the start position of the first slice index, y specifies the position of the index of the cutoff but not included slice.

Adds elements to the list:

a_list = [‘a']
a_list = a_list + [2.0, 3] — [‘a', 2.0, 3]
a_list.append(True) — [‘a', 2.0, 3, True]
a_list.extend([‘four','Ω']) — [‘a', 2.0, 3, True,'four','Ω']
a_list.insert(0,'Ω') — [‘Ω','a', 2.0, 3, True,'four','Ω']

list other functions:

a_list = [‘a', ‘b', ‘new', ‘mpilgrim', ‘new']
a_list.count(‘new') — 2
a_list.count(‘mpilgrim') — 1
‘new' in a_list — True
a_list.index(‘new') — 2
a_list.index(‘mpilgrim') — 3
a_list.index(‘c') — through a exception because ‘c' is not in a_list.
del a_list[1] — [‘a', ‘new', ‘mpilgrim', ‘new']
a_list.remove(‘new') — [‘a', mpilgrim', ‘new']

Note: remove only removes the first 'new'

a_list.pop() - 'new'/['a', mpilgrim'] (delete and return the last element)
a_list.pop(0) - 'a' / ['mpilgrim'] (removes and returns the 0th element)

Empty lists are false, other lists are true.

tuple (elements are immutable lists):

Definition: the same as for lists, except that the entire set of elements is enclosed in parentheses, not square brackets.

a_tuple = (“a”, “b”, “mpilgrim”, “z”, “example”)
a_tuple = (‘a', ‘b', ‘mpilgrim', ‘z', ‘example')

tuple can only be indexed, not modified.

Advantages of tuples over lists:

1. Fast
2. "Write-protect" for more security
3. some tuples can be used as dictionary keys?

The built-in tuple() function takes a list argument and converts the list into a tuple.

Similarly, the list() function converts a tuple into a list

Assign multiple values at the same time:

v = (‘a',2, True)
(x,y,z) = v — x=‘a', y=2, z=True

range() - built-in function to assign values to consecutive variables

(Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday) = range(7)

Monday — 0
    Thursday — 3
    Sunday — 6
range() - The built-in function range() constructs a sequence of integers, and range() returns an iterator.

collection (the values inside are unordered):

Create a collection: separate each value with a comma and include all values with curly braces{}.
    a_set = {1}
    type(a_set) — <class ‘set'>
Create collections based on lists:
    a_list = [‘a', ‘b', ‘mpilgrim', True, False, 42]
    a_set = set(a_list)
    a_set — {‘a', ‘b', ‘mpilgrim', True, False, 42}
a_set = set() - gets an empty set
a_dic = {} - get an empty dic

Modify the collection:

    a_set = {1,2}
    a_set.add(4) — {1,2,4}
    len(a_set) — 3
    a_set.add(1) — {1,2,4}
    a_set.update({2,4,6}) — {1,2,4,6}
    a_set.update({3,6,9}, {1,2,3,5,8,13}) — {1,2,3,4,5,6,8,9,13}
    a_set.update([15,16]) — {1,2,3,4,5,6,8,9,13,15,16}
    a_set.discard(16) — {1,2,3,4,5,6,8,9,13,15}
    a_set.discard(16) — {1,2,3,4,5,6,8,9,13,15}
    a_set.remove(15) —{1,2,3,4,5,6,8,9,13}
    a_set.remove(15) — through a exception
    a_set.pop() — return 1 / {2,3,4,5,6,8,9,13}
Note: a_set.pop() randomly deletes a value in the set and returns that value.
    a_set.clear() — set()
    a_set.pop() — through exception.  

    Other operations on sets:

    a_set = {2,3,4,5,6,8,9,13}
    30 in a_set — False
    4 in a_set — True
    b_set  = {3,4,10,12}
a_set.union(b_set) - union of two sets
a_set.intersetion(b_set) - intersection of two sets
a_set.difference(b_set) - elements that are in a_set but not in b_set
a_set.symmetric_difference(b_set) - returns all elements that appear in only one set
a_set.issubset(b_set) - determine if a_set is a subset of b_set
b_set.issuperset(a_set) - determine if b_set is a superset of a_set

In a Boolean type context environment, the empty set is false and any set containing more than one element is true.

Dictionary (unordered collection of key-value pairs):

Create a dictionary:

    a_dic = {‘server':'db.',
    ‘databas':'mysql'}
    a_dic[‘server'] — ‘db.'
    a_dic[‘database'] — ‘mysql' 

   Modify the dictionary:

    a_dic[‘user'] = ‘mark'  — {'user': 'mark', 'server': 'db.',     'database':     ‘blog'}
    a_dic[‘database'] = ‘blog' —  {'user': 'mark', 'server': 'db.',     'database': ‘blog'}
    a_dic[‘user'] = ‘bob' — {'user': 'bob', 'server': 'db.',     'database':     ‘blog'}
    a_dic[‘User'] = ‘mark' — {'user': 'bob', ‘Uuser': 'mark', 'server':     'db.', 'database': ‘blog'}

Note: 1. Duplicate keys are not allowed in the dictionary. Assigning a value to an existing key will overwrite the original value;
2. New key-value pairs can be added at any time;
3. Dictionary keys are case sensitive.

Mixed-value dictionary:

    suffixes = { 1000:[‘KB', ‘MB', ‘GB', ‘TB', ‘PB', ‘EB', ‘ZB', ‘YB'],
        1024: [‘KiB', ‘MiB', ‘GiB', ‘TiB', ‘PiB' , ‘EiB', ‘ZiB', ‘YiB']}

    len(suffixes) — 2
    1000 in suffixes — True
    suffixes[1024] — [‘KiB', ‘MiB', ‘GiB', ‘TiB', ‘PiB' , ‘EiB', ‘ZiB', ‘YiB']
    suffixes[1000][3] — ‘TB'
   
Empty dictionary is false, all other dictionaries are true.

The above mentioned is the whole content of this article, I hope you will enjoy it.