I. TensorBoard
TensorBoard
It is generally used asTensorFlow
is a visualization tool, deeply integrated with TensorFlow, that presents TensorFlow's network computation graphs, plots image-generated quantitative metrics, additional data, and more.
In addition.TensorBoard
is also a standalone tool that can be used for visualization in PyTorch as well.
1. Installation:
pip install tensorboard
2. Initiation:
tensorboard --logdir="log directory"
When starting tensorboard, you can specify parameters such as logdir, port (default 6006), host (default localhost):
3. Tensorboard visualization demo (PyTorch framework):
Training the model, importingtensorboard. SummaryWriter
save (a file etc) (computing)loss、accuracy
and other log messages.
# Import SummaryWriter from import SummaryWriter ... # Create a SummaryWriter instance, specifying the location of log_dir summaryWriter = SummaryWriter(log_dir="/Users/liyunfei/PycharmProjects/python3practice/06DL/fcnn/logs") ... # Write train_loss, test_loss, score, etc. during model training summaryWriter.add_scalars("loss", {"train_loss_avg": train_loss_avg, "test_loss_avg": test_loss_avg}, epoch) summaryWriter.add_scalar("score", score, epoch)
Start TensorBoar and visualize the training process.
1) Start command:
tensorboard --logdir=/Users/liyunfei/PycharmProjects/python3practice/06DL/fcnn/logs
II. Visdom
Visdom
beFacebook
A visualization tool developed specifically for PyTorch that supports "remote data" visualization with support for Torch and Numpy. GitHub address:/fossasia/visdom
1. Installation:
pip install visdom
2. Initiation:
python -m
-m is to start as a module service
For linux/mac-os environments, you can use the following command to start running in the background
nohup python -m &
When starting Visdom, you can specify other parameters such as port (default 8097) and hostname (default localhost):
usage: [-h] [-port port] [--hostname hostname] [-base_url base_url] [-env_path env_path] [-logging_level logger_level] [-readonly] [-enable_login] [-force_new_cookie] [-use_frontend_client_polling]
3、Visdom visualization demonstration
1) Start Visdom:
python -m -port 8097
2) Successful startup is as follows:
3) Visualization code for the training process:
# Import the visdom package import visdom # Create Visdom object, connect to server, specify env environment (not specify default env="main") viz = (server='http://localhost', port=8097, env='liyunfei') ... ([0.], [0], win='train_loss', opts=dict(title='train_loss')) ([0.], [0], win='accuracy', opts=dict(title='accuracy')) ... # Real-time visualization of loss, accuracy, etc. during model training. ([train_loss_avg], [epoch], win='train_loss', update='append') ([accuracy], [epoch], win='accuracy', update='append')
4) Visualize the results:
5) Other operations - visualize one/multiple images:
Example:
import visdom import numpy as np viz = (server='http://localhost', port=8097, env='liyunfei') # A picture ( (3, 512, 256), opts=dict(title='Random!', caption='How random.'), ) # Multiple pictures ( (20, 3, 64, 64), nrow=5, opts=dict(title='Random images', caption='How random.') )
Effect:
6) Visdom's more visualization API (commonly used line, image, text):
: 2D or 3D scatterplot
:: Wiremap
: Stem and leaf diagrams
:: Heat maps
: Bar Chart
: Histogram
: Box diagrams
: Surface View
: Profiles
: Plotting a 2D vector field
: Photos
: Text
:: Grid maps
: Serialization status
To this article on PyTorch visualization tools TensorBoard and Visdom article is introduced to this, more related PyTorch visualization tools content please search my previous articles or continue to browse the following related articles I hope that you will support me in the future more!