preamble
Tripadvisor is the world's leading travel website, featuring reviews and advice from travelers around the world, comprehensive coverage of hotels, attractions, restaurants, airlines worldwide , as well as trip planning and hotel, attraction, and restaurant booking features.
Tripadvisor and its websites are present in 49 markets worldwide, with an average of 415 million unique visitors per month.
third-party repository
requests >>> pip install requests
parsel >>> pip install parsel
development environment (computer)
Version: python 3.8
Editor: pycharm 2021.2
Starting Code
Request data
headers = { 'cookie': 'TADCID=foOmU9bDp6JGIXg2ABQCFdpBzzOuRA-9xvCxaMyI12wTEaQSQ4euq_1sNSDmJybFCMezFLrAnKRGZ_uvGNNO_9cSzuJeK8RQlE4; TAUnique=%1%enc%3AHARC1EMLan58P07MI4ZMcqI%2BzHGWu*6TE6zQDNwk%3D; TASSK=enc%3AAL%2Bm9xwFy7%2BjYONIRS%2F2kEbA%2FtOrlDbcW%2FwCSHs44XP9R3ddE%2BKJxi3FiDuozLe0Ov2ujtnFah8i0sN%2FRdUxZGis0TClwsaz7%2B7Uv8dh%2BvHM%2FfH9C%2FcEYLBYBtn1yLmBNg%3D%3D; ServerPool=A; PMC=V2*MS.2*MD.20220311*LD.20220311; TART=%1%enc%3AfD9OzCOGTHLKxR1qLNfmGZurd9xliidHT5bmQw2z505WnDQeBJdPDWc64WFlxikpNox8JbUSTxk%3D; TATravelInfo=V2*A.2*MG.-1*HP.2*FL.3*RS.1; TASID=9CCF4EA45B4141A8B5E4F03D36821474; ak_bmsc=31083286436C157F558D959D23D94849~000000000000000000000000000000~YAAQqF1kX6lPsVF/AQAAhTyqdw8F4+OoWZwjJCqsKUS/ykkFQHkXml5We7WY4q6KDUeIkm36a0Fs41jt7Jx6MFwnzloND2Iry1Iuwnj5I7oPxsI1RTjfGXSr408rscnzKPJHpRIXwuuiL+SNZxp233DOhrqrbTQ2cDTiGPk8qAYcLYq1OHpyOjLpc6L2zPbiSdvfDAuz2ujLUbWZV33YVrUd1UcmBMKJOSS/C12JeFdLCcjOihJvc4Zlu5HMYQUBdjTaV4zll3YO9YWxdm5pUT57vjI3WjxNhLwOXS93F3ogo/VOzmvk2n4rptCDH1vffz7Dpmp4yRn0dnX8RtiKiolFV00rBs0yC9Nxa67F0qPkJMMS6t6pNo+08PIre7VIiAIxQoWUNNiBiNDXeQ==; PAC=AHc5Ocqizh5jbN81AnjCtcF7k5P54vojrezhxeu8s4DdhkIZSMBuxXUioaVGVVo99Ysr_IbYXqNKjsddfzI8psluCp1NwuwQiBOvmdhP_r8ntVPeHXBc5u782Y8i4KrpV0a29aTnmykzihOxeEfilEfHZOGZxkWN8GRLwHay1MUpBazo7e4Pdtl3tndoYnNIDWcRtHzZJIDE9odWhqOzUE0%3D; TAReturnTo=%1%%2FRestaurants-g188590-Amsterdam_North_Holland_Province.html; roybatty=TNI1625!AJyUZ5ejQVombB9Jv3PVhqqhyMhwsanzT2C6omYz8l6mQNt%2FP5v6CLnnlymNXfhMwolnHznm%2BAmT81YSeygcVxnWHERn16eR747rX9fmWmeCMoris6ffxKTbJ6%2BjObZ6rmffv7I5wEGZ009WzKMlVA%2BXJAheGoIKHOD3gUDLVYlY%2C1; TATrkConsent=eyJvdXQiOiIiLCJpbiI6IkFMTCJ9; TASession=V2ID.9CCF4EA45B4141A8B5E4F03D36821474*SQ.9**GR.82*TCPAR.12*TBR.1*EXEX.98*ABTR.74*PHTB.27*FS.67*CPU.8***DS.5****FA.1*DF.0**LD.188590*EAU._; TAUD=LA-1646980142821-1*RDD-1-2022_03_11*LG-863371-2..*LD-863372-.....; _pbjs_userid_consent_data=3524755945110770; _li_dcdm_c=.; _lc2_fpi=b140173de591--01fxvvhm5q52dte42gshbn1234; __gads=ID=887c76ae8964a5bc:T=1646981079:S=ALNI_MYwTZNsJPdidCGF3BTM3pOV79wAUg; _lr_sampling_rate=100; _lr_retry_request=true; _lr_env_src_ats=false; __li_idex_cache=%7B%7D; pbjs_li_nonid=%7B%7D; __vt=bI5Nl4_3wIiyQqd-ABQCIf6-ytF7QiW7ovfhqc-AvRvwyUuxl21BvNUgBcewLtYtxhD9pK8plYHHUPpFuGJQzlL9HjsNiQXGwLu0f-XidRXohA9m08ary-La12XkjuKCU2QeR3ijnhWjQ8bnjvOcAaUKoA; bm_sv=867C80B13B2E8AE707E1A411B950E849~HDnKV8jbSFu9eHNiLb/p3fK3KqcxdMjPpLXFMD9YvvwLoQEuDGPgZZwEDhQeezJZJhdrUxX02mvzmDqkV7615Fm508wASvLcLsXmW/6+1K9pDp2UuCDIYbuZgv/2m76YS7Og/SBcU6xkIVnHhMVqpxWfro/1T3kO1LdXuFuprhA=; OptanonConsent=isGpcEnabled=0&datestamp=Fri+Mar+11+2022+14%3A53%3A51+GMT%2B0800+(%E4%B8%AD%E5%9B%BD%E6%A0%87%E5%87%86%E6%97%B6%E9%97%B4)&version=6.30.0&isIABGlobal=false&hosts=&consentId=cc7e2f72-5007-428f-a72e-392f9741b69d&interactionCount=1&landingPath=https%3A%2F%%2FRestaurants-g188590-Amsterdam_North_Holland_Province.html&groups=C0001%3A1%2CC0002%3A1%2CC0003%3A1%2CC0004%3A1', 'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/99.0.4844.51 Safari/537.36', } url = '/Restaurants-g188590-Amsterdam_North_Holland_Province.html' response = (url, headers=headers)
2. Access to data (web page source code)
html_data =
3. Parsing the data (extracting the content of the data we want Details page link)
selector = (html_data) # Extract the content of the tag's attributes ::attr(href) link link_list = ('.::attr(href)').getall() for link in link_list: link = '/' + link
4. Send a request (to access all detail page links) to get data
detail_html = (link, headers=headers).text
5. Parsing data
detail_selector = (detail_html) store_name = detail_selector.css('.fHibz::text').get() comment_count = detail_selector.css('.eSAOV.H3:nth-child(2) .eBTWs::text').get() address = detail_selector.css('.eSAOV.H3:nth-child(3) .:nth-child(1) .fhGHT::text').get() city = detail_selector.css('.breadcrumbs li:nth-child(4) span::text').get() phone = detail_selector.css('.eSAOV.H3:nth-child(3) .:nth-child(2) .fhGHT a::text').get() score = detail_selector.css('.eEwDq .fdsdx::text').get() website = (',"website":"(http.*?)"', detail_html)[0] print(store_name, comment_count, city, address, phone, score, link, website)
6. Save data
with open('', mode='a', newline='', encoding='utf-8') as f: csv_writer = (f) csv_writer.writerow([store_name, comment_count, city, address, phone, score, link, website])
7. Getting the data
Above is the Python crawler to collect Tripadvisor data case implementation of the details, more information about the Python crawler to collect Tripadvisor data please pay attention to my other related articles!