I. Organizing data
Using 300 movies as a data source
import pandas as pd cnboo=pd.read_excel("")
cnboo
import seaborn as sns import numpy as np import matplotlib as mpl from matplotlib import pyplot as plt import pandas as pd from datetime import datetime,timedelta %matplotlib inline ['-serif']=['SimHei'] # Used to display Chinese labels properly ['axes.unicode_minus']=False # Used to display the negative sign normally from datetime import datetime
! pip install plotly # Installation import as plt import plotly from import download_plotlyjs,init_notebook_mode,plot,iplot
x=cnboo['BO'].tolist() y=cnboo['PERSONS'].tolist() dict01={"x":x,"y":y} dict01
II. Line graphs
# Line graphs iplot([dict01])
III. Scatterplot
import plotly.graph_objs as go iplot([(x=x,y=y,mode='markers')])
# Randomly generated dot plots import numpy as np iplot([(x=(100),y=(100),mode='markers')])
go
trace=(x=cnboo['PRICE'],y=y,mode='markers',) data=[trace] iplot(data)
trace=(x=cnboo['PRICE'],y=y,mode='markers',marker=dict(color='red',size=9,opacity=0.4)) data=[trace] iplot(data)
IV. Pie charts
colors=['#dc2624','#2b4750','#45a0a2','#e87a59','#7dcaa9','#649E7D','#dc8018', '#C89F91','#6c6d6c','#4f6268','#c7cccf']
filmtype=cnboo['TYPE'] filmbo=cnboo['PRICE'] trace=(labels=filmtype,values=filmbo, hoverinfo='label+percent',textinfo='value',textfont=dict(size=10), marker=dict(colors=colors,line=dict(color='#000000',width=3))) data=[trace]
iplot(data)
filmtype=cnboo['TYPE'] filmbo=cnboo['PRICE'] trace=(labels=filmtype,values=filmbo, hoverinfo='label+percent',textinfo='value',textfont=dict(size=12), marker=dict(colors=colors)) data=[trace] iplot(data)
V. Bar charts
# plotly bar trace1=(x=cnboo['TYPE'],y=cnboo['PRICE'],name="Genre and Fare") trace2=(x=cnboo['TYPE'],y=y,name="Type and number") layout=(title="Chinese Movie Genres vs. Ticket Prices, Numbers of People.",xaxis=dict(title='Movie genre')) data=[trace1,trace2] fig=(data,layout=layout) iplot(fig)
VI. Point map (setting up multiple GO objects)
trace1=(x=cnboo['TYPE'],y=cnboo['PRICE'],name="Genre and Fare",mode="markers", marker=dict(color="red",size=8)) trace2=(x=cnboo['TYPE'],y=cnboo['PERSONS'],name="Type and number",mode="markers", marker=dict(color="blue",size=5)) data=[trace1,trace2] iplot(data)
trace1=(x=cnboo['TYPE'],y=cnboo['PRICE'],name="Genre and Fare",mode="markers", marker=dict(color="red",size=8)) trace2=(x=cnboo['TYPE'],y=cnboo['PERSONS'],name="Type and number",mode="markers", marker=dict(color="blue",size=5)) layout=(title="Chinese Movie Genres vs. Ticket Prices, Numbers of People.",plot_bgcolor="#FFFFFF") data=[trace1,trace2] fig=(data,layout=layout) iplot(fig)
VII. 2D density map
import plotly.figure_factory as ff
fig=ff.create_2d_density(x,y,colorscale=colors,hist_color='#dc2624',point_size=5) iplot(fig,filename='Ratings and person counts')
colorscale=['rgb(20, 38, 220)', 'rgb(255, 255, 255)'] # The last color is all about calling the background
fig=ff.create_2d_density(x,y,colorscale=colorscale,hist_color='#dc2624',point_size=5) iplot(fig,filename='Ratings and person counts')
VIII. Simple 3D diagrams
layout=(title="China's Movie Box Office in Relation to Attendance, Ticket Prices.",barmode="group")
trace01=go.Scatter3d( x=cnboo['BO'], y=cnboo['PRICE'], z=cnboo['PERSONS'], mode='markers', marker=dict(size=12,color=colors,colorscale='Viridis', opacity=0.5,showscale=True) #opacity is transparency )
data=[trace01] fig=(data=data,layout=layout) iplot(fig,filename='3d')
Above is Python matplotlib plotly plotting charts in detail, more information about Python matplotlib plotly please pay attention to my other related articles!